

Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse Jennifer Keiser Helminth Drug Development Unit Department of Medical Parasitology and Infection Biology

Tribendimidine for the treatment of liver fluke infections

Weimar, 17.10.2014

>15 million people infected in Southeast Asia

Huge public health burden \rightarrow Development of malignant **cholangiocarcinoma**

Single drug available: praziquantel

Tribendimidine

- Derivative of amidantel, an anthelminthic discovered by Bayer, with broad anthelminthic activity
- Discovered by the Institute of Parasitic Diseases, CDC Shanghai, China
- Marketed in China since 2004 for the treatment of hookworm, Ascaris lumbricoides and Enterobius vermicularis infection
- Efforts ongoing to develop tribendimidine outside China

Swiss TPH

Tribendimidine tested in vivo and in vitro

A. In vitro against O. viverrini

Fast acting: $EC_{50} = 225 \text{ nM} (\triangleq 40 \text{ ng/ml})$ after 3 h of incubation

B. In vivo			
Liver fluke	Dose (mg/kg)	No. of rodents investigated	Total worm burden reduction (%)
C. sinensis	150	5	99.0
O. viverrini	400	5	62.9

In vitro and in vivo studies with tribendimidine

 \mathbf{H}

Efficacy and safety of mefloquine, artesunate, mefloquine-artesunate, tribendimidine, and praziquantel in patients with *Opisthorchis viverrini*: a randomised, exploratory, open-label, phase 2 trial

Phonepasong Soukhathammavong, Peter Odermatt, Somphou Sayasone, Youthanavanh Vonghachack, Penelope Vounatsou, Christoph Hatz, Kongsap Akkhavong, Jennifer Keiser

125 children (age 10-15 years) infected with O. viverrini

Randomly assigned to praziquantel (75 mg/kg), **tribendimidine (400 mg)**, mefloquine (25 mg/kg), artesunate (10 mg/kg), mefloquine-artesunate (100/250 mg x 3)

2x2 Kato-Katz and 1 FECT at baseline and follow up (21 days post-treatment)

Mefloquine, artesunate, mefloquine-artesunate: no effect

Tribendimidine: cure rate: 70%, egg reduction rate: 99.3% versus praziquantel: cure rate: 56%, egg reduction rate: 98.4%

Exploratory trial against *Clonorchis sinensis*

Swiss TPH 😏

Tribendimine (TBD) versus Praziquantel (PZQ)

Parameters	TBD 400 mg once (n=25)	TBD 400 mg once daily for 3 days (n=24)	PZQ 75 mg/kg divided in 3 doses (n=25)
No. of patients cured (%)	11 (44)	14 (58)	14 (56)
No. of patients cured light infection (%)	5 (100)	4 (100)	4 (100)
No. of patients cured moderate infection (%)	6 (54)	10 (59)	7 (54)
No. of patients cured heavy infection (%)	0	0	3 (38)
Egg reduction rate (%)	97.6	98.8	98.8

• Tribendimidine well tolerated

Dose	Ν	Nº Cured (%)	ERR (%)
25 mg	39	10 (25.6)	62
50 mg	47	20 (42.6)	91
100 mg	44	34 (77.3)	94
200 mg	47	40 (85.1)	94
400 mg	47	43 (91.5)	88
600 mg	45	36 (80.0)	95

• Best efficacy observed with 400 mg tribendimidine

ERR: Egg reduction rate

Pharmacokinetic studies

Dried blood spots technique

PK compartmental model

Model diagnostics

- Iterative process to optimised final model
- least squares objective function
- $K_{20} = 0.35 \text{ CP} / \text{V} \text{ and } K_{23} = 0.65 \text{ CP} / \text{V} [1]$

	AUC (hr*nmol/L)	Cmax (nmol/L)	T1/2 (hr)	Tmax (hr)
Blood	47800 (18000-51100)	4040 (1690-6030)	4.9 (2.9-16.7)	9.9 (4.3-12.9)
Plasma	44400 (19900-53700)	4090 (3260-6030)	4.1 (3.8-4.4)	9.3 (3.8-12.9)
DBS	35300 (6870-46200)	3400 (2100-5010)	4.6 (4.4-5.1)	9.6 (3.6-13.8)

- PK/PD relationship to be determined
- The observed C_{max} are higher than the EC₉₀ determined *in vitro* (± 430 nM)

Large PK-variability in T_{max} were observed

- Produced by the gastroretentive drug formulation (immediate floating tablets)
- A reduced intestinal pH might delay drug release but cannot explain the large variability
- 50 mg tablets exhibit improved pharmaceutical properties (non-floating, fast release)

National Institute of Public Health

Dr. S. Sayasone, Dr. P. Soukhathammavong

Pharmaceutical Technology Prof. Dr. J. Huwyler

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention Qian Men-Bao, Zhou Xiao-Nong

SwissTPH

Dr. U. Duthaler, I. Meister, Dr. P. Odermatt, Dr. M. Penny

